setHiddenLayersCount(3); // 3 Hidden layers $nn->setHiddenLayerNeuronsCount(3); // Composed with 3 neurons each $nn->setInputLayerCount(3); // 3 inputs $nn->setOutputLayerCount(1); // 1 output $nn->setMutationThreshold(0.3); // mutation 30% each generation $nn->setFitnessEnd(0); // Algorith is done when fitness reaches 0 echo "$part. NeuralNetwork configured\n"; $part++; $d = [0, 0, 0]; $nn->addSample($d, behaviour($d)); $d = [0, 0, 1]; $nn->addSample($d, behaviour($d)); $d = [0, 1, 0]; $nn->addSample($d, behaviour($d)); $d = [0, 1, 1]; $nn->addSample($d, behaviour($d)); $d = [1, 0, 0]; $nn->addSample($d, behaviour($d)); $d = [1, 0, 1]; $nn->addSample($d, behaviour($d)); $d = [1, 1, 0]; $nn->addSample($d, behaviour($d)); $d = [1, 1, 1]; $nn->addSample($d, behaviour($d)); $d = [0, 0, 0]; $nn->addSample($d, behaviour($d)); $d = [0, 0, 2]; $nn->addSample($d, behaviour($d)); $d = [0, 2, 0]; $nn->addSample($d, behaviour($d)); $d = [0, 2, 2]; $nn->addSample($d, behaviour($d)); $d = [2, 0, 0]; $nn->addSample($d, behaviour($d)); $d = [2, 0, 2]; $nn->addSample($d, behaviour($d)); $d = [2, 2, 0]; $nn->addSample($d, behaviour($d)); $d = [2, 2, 2]; $nn->addSample($d, behaviour($d)); echo "$part. Samples added to NeuralNetwork\n"; $part++; $nn->store('test1/test1', true); echo "$part. NeuralNetwork stored to 'test1/test1'\n"; $part++; } /* [2] Initializing learning routine =========================================================*/ $fitness = 0; $max_fit = 0; $nn->loadLearningRoutine(function($input, $output){ global $fitness; $fitness -= abs(round($output[0]) - behaviour($input)[0]); }); echo "$part. Learning routine initialized.\n"; $part++; /* [3] Learning through generations and genomes =========================================================*/ /* (1) For each generation */ $last_gnr = -1; while( true ){ if( $nn->gnr > $last_gnr) $start = microtime(true); $last_gnr = $nn->gnr; $max_fit = -1e9; /* (2) For each genome */ while( true ){ $fitness = 0; /* (2.1) Get current genome */ $g = $nn->getGenome(); echo "\r[x] gnm ".($nn->gnm+1)."/100 on gnr ".($nn->gnr+1)."/50 - max_fit: $max_fit "; /* (2.2) Train genome with random samples */ for( $r = 0 ; $r < 100 ; $r++ ) $g->train([rand(0,100), rand(0,100), rand(0,100)]); /* (2.3) Set fitness & go to next genome */ if( $fitness > $max_fit ) $max_fit = $fitness; $g->setFitness($fitness); if( $nn->gnm >= 100-1 ) break; $nn->nextGenome(); } $nn->nextGenome(); // If generation evolution, notify if( $nn->gnr > $last_gnr) echo "\n\t".((microtime(true)-$start))."s\n"; if( is_null($nn->gnr) || $nn->gnr == 50-1 ) break; } } if( $guess && 'guessing_process' ){ $part = 1; echo "Welcome to neural-network.php\n"; echo "-----------------------------\n\n"; /* [1] Trying to load neural network =========================================================*/ try{ $nn = NeuralNetwork::load('test1/test1'); echo "$part. NeuralNetwork loaded from 'test1/test1'\n"; $part++; /* [2] Else, creates it =========================================================*/ }catch(\Exception $e){ echo "You must create/train your neural network before using it.\n"; exit(); } /* [2] Fetch trained genome =========================================================*/ $genome = $nn->getTrainedGenome(); $genome->setCallback(function($in, $out){ echo "callback input: ".implode(',', $in)."\n"; echo "callback output: ".round($out[0])."\n"; echo "callback result: ".implode(',', behaviour($in))."\n"; }); $genome->train([rand(0,100), rand(0,100), rand(0,100)]); } if( false ){ $g = new Genome(2, 3, 3, 2); $fitness = 0; $g->setCallback(function($input, $output){ global $fitness; echo "callback output: ".round($output[0]).", ".round($output[1])."\n"; $result = behaviour($input); if( $output[0] == $result[0] ) $fitness++; if( $output[1] == $result[1] ) $fitness++; }); echo $g->train([0, 0, 0]); echo $g->train([0, 0, 1]); echo $g->train([0, 1, 0]); echo $g->train([0, 1, 1]); echo $g->train([1, 0, 0]); echo $g->train([1, 0, 1]); echo $g->train([1, 1, 0]); echo $g->train([1, 1, 1]); echo $g->train([0, 0, 0]); echo $g->train([0, 0, 2]); echo $g->train([0, 2, 0]); echo $g->train([0, 2, 2]); echo $g->train([2, 0, 0]); echo $g->train([2, 0, 2]); echo $g->train([2, 2, 0]); echo $g->train([2, 2, 2]); echo "fitness: $fitness\n"; $g->setFitness($fitness); echo $g->serialize(); } // REWRITE TEST // for( $a = 0, $al = 50 ; $a < $al ; $a++ ) // for( $b = 0, $bl = 20 ; $b < $bl ; $b++ ){ // print "genome $b/$bl on generation $a/$al \r"; // usleep(1000*10); // } ?>