neuralnet.php/build/neuralnetwork/core/Genome.php

458 lines
14 KiB
PHP
Raw Normal View History

<?php
namespace neuralnetwork\core;
use filemanager\core\FileManager;
class Genome implements \Serializable{
/************************************************
**** Constants ****
************************************************/
const MIN = 0;
const MAX = 1e9;
/************************************************
**** LOCAL ATTRIBUTES ****
************************************************/
private $layers; // Number of hidden layers
private $inputN; // Number of input neurons
private $neurons; // Number of neurons for each hidden layer
private $outputN; // Number of output neurons
private $synapses; // Synapses between neurons
private $callback; // callback training function
private $fitness; // Genome's fitness
/************************************************
**** Genome Construction ****
************************************************/
/* CONSTRUCTOR
*
* -- RANDOM CREATION --
* @layers<int> Number of hidden layers to manage
* @neurons<int> Number of neurons per hidden layer
* @inN<int> Number of input neurons
* @outN<int> Number of output neurons
*
* -- CLONING --
* @base<Genom> Genome to clone to
*
* -- CROSS-OVER CREATION --
* @father<Genome> First parent
* @mother<Genome> Second parent
*
*
*/
public function __construct(){
/* (1) Get arguments */
$argv = func_get_args();
$argc = count($argv);
/* (2) If CrossoverCreation */
if( $argc > 1 && $argv[0] instanceof Genome && $argv[1] instanceof Genome )
$this->construct_crossover($argv[0], $argv[1]);
/* (3) If RandomCreation */
else if( $argc > 3 && is_numeric($argv[0]) && is_numeric($argv[1]) && is_numeric($argv[2]) && is_numeric($argv[3]) )
$this->construct_new($argv[0], $argv[1], $argv[2], $argv[3]);
/* (4) If InheritanceCreation (clone) */
else if( $argc > 0 && $argv[0] instanceof Genome )
$this->construct_inheritance($argv[0]);
/* (5) If no match */
else
throw new \Error('Invalid Genome constructor\'s arguments.');
$this->callback = function(){};
}
/* BUILDS A Genome RANDOMLY WITH PARAMETERS
*
* @layers<int> The number of hidden layers to manage
* @neurons<int> The number neurons per layer
* @inN<int> Number of input neurons
* @outN<int> Number of output neurons
*
* @return created<Boolean> If Genome has been successfully created
*
*/
private function construct_new($layers, $neurons, $inN, $outN){
/* (1) Checks parameters */
if( abs(intval($layers)) !== $layers || abs(intval($neurons)) !== $neurons || abs(intval($inN)) !== $inN || abs(intval($outN)) !== $outN )
return false;
// set layers
$this->layers = $layers;
/* (2) Store number of neurons */
$this->neurons = $neurons;
$this->inputN = $inN;
$this->outputN = $outN;
/* (3) Creating random synapses */
$this->synapses = [];
for( $i = 0, $l = $neurons*($inN+$outN+$neurons*$layers) ; $i < $l ; $i++ )
$this->synapses[$i] = rand(self::MIN, self::MAX) / self::MAX;
// Success status
return true;
}
/* BUILDS A Genome BASED ON A PARENT
*
* @parent<Genome> Parent genome to clone into children
*
* @return created<Boolean> If cloned Genome has been created successfully
*
*/
private function construct_inheritance($parent=null){
/* (1) Checks parent type */
if( !($parent instanceof Genome) )
return false;
/* (2) Clones into this Genome */
$this->layers = $parent->layers;
$this->neurons = $parent->neurons;
$this->synapses = array_slice($parent->synapses, 0);
// Success state
return true;
}
/* BUILDS A Genome BASED ON TWO PARENTS
*
* @father<Genome> First parent ($father)
* @mother<Genome> Second parent ($mother)
*
* @return created<Boolean> If crossed-over Genome has been created successfully
*
*/
private function construct_crossover($father=null, $mother=null){
/* (1) Checks parent type */
if( !($father instanceof Genome) || !($mother instanceof Genome) )
return false;
/* (2) Checks the attributes (same species) */
$diffAttr = $father->layers !== $mother->layers;
$diffAttr = $diffAttr || $father->inputN !== $mother->inputN;
$diffAttr = $diffAttr || $father->neurons !== $mother->neurons;
$diffAttr = $diffAttr || $father->outputN !== $mother->outputN;
if( $diffAttr )
return false;
/* (3) Set layer count */
$this->layers = $father->layers;
/* (4) Set neurons number */
$this->inputN = $father->inputN;
$this->neurons = $father->neurons;
$this->outputN = $father->inputN;
/* (5) Do random crossover for synapses */
$this->synapses = [];
for( $i = 0, $l = $this->neurons*($this->inputN+$this->outputN+$this->neurons*$this->layers) ; $i < $l ; $i++ )
if( !!rand(0,1) ) $this->synapses[$i] = $father->synapses[$i];
else $this->synapses[$i] = $mother->synapses[$i];
// Success state
return true;
}
/************************************************
**** Setters ****
************************************************/
/* SETS THE CALLBACK FUNCTION
*
* @callback<Function> Callback function to train with
*
*/
public function setCallback($callback=null){
/* (1) Checks @callback argument */
if( !is_callable($callback) )
throw new \Error('Wrong argument for Genome\'s callback function.');
/* (2) Set callback function */
$this->callback = $callback;
}
/* SETS THE FITNESS OF THE GENOME
*
* @fitness<double> Calculated fitness of the genome
*
*/
public function setFitness($fitness=null){
/* (1) Checks @fitness argument */
if( !is_numeric($fitness) )
throw new \Error('Wrong argument for specifying Genome\'s fitness.');
/* (2) Set fitness */
$this->fitness = floatval($fitness);
}
/************************************************
**** Genome Actions ****
************************************************/
/* APPLIES A MUTATION ON THE Genome WITH A SPECIFIC @threshold
*
* @threshold<double> Mutation threshold
*
*/
public function mutation($threshold=0.5){
/* (1) Checks @threshold argument */
if( floatval($threshold) !== $threshold || $threshold < 0 || $threshold > 1 )
throw new \Error('Invalid threshold for Genome mutation.');
/* (2) Calculates how many neurons/synapses to mutate */
$synapsesMutations = round( (count($this->synapses) - 1) * $threshold );
/* (3) Choose random synapses' indexes */
$iSynapses = [];
while( count($iSynapses) < $synapsesMutations ){
$r = rand(0, count($this->synapses)-1);
if( !in_array($r, $iSynapses) )
$iSynapses[] = $r;
}
/* (4) Update chosen synapses */
for( $i = 0, $l = count($iSynapses) ; $i < $l ; $i++ )
$this->synapses[$iSynapses[$i]] = rand(self::MIN, self::MAX) / self::MAX;
}
/* CALCULATES THE OUTPUT OF THE GENOME
*
* @input<Array> Input for which we want fitness
* @callback<Function> [OPTIONAL] Callback function
*
* @note: will call @callback function with INPUTS as 1st argument and OUTPUTS as 2nd arguments
*
*/
public function train($input=null, $callback=null){
/* (1) Checks @input argument */
if( !is_array($input) || count($input) !== $this->inputN )
throw new \Error('Invalid @input for Genome\'s training.');
/* (2) Checks optional @callback argument */
if( is_callable($callback) )
$this->setCallback($callback);
/* [1] Set temporary calculation data
=========================================================*/
/* (1) Set temporary neurons data */
$neurons = array_merge( $input, array_fill(0, $this->neurons*$this->layers, 0), array_fill(0, $this->outputN, 0) );
/* (2) Set temporary synapses data */
$synapses = $this->synapses;
/* [2] Calculates output
=========================================================*/
/* (1) For each hidden layer
---------------------------------------------------------*/
foreach($this->layersIterator() as $lr=>$l){
/* (2) For each neuron of this layer
---------------------------------------------------------*/
foreach($this->neuronsIterator($l) as $nr=>$n){
$neurons[$n] = 0;
/* (3) For each synapse between current neuron and last layer
---------------------------------------------------------*/
foreach($this->synapsesIterator($l, $nr) as $sr=>$s){
// echo "current: n#$nr/l#$l = s#$s * n#$sr\n";
// echo "calc: ${neurons[$n]} += ${synapses[$s]} * ${neurons[$sr]}\n";
$neurons[$n] += $synapses[$s] * $neurons[$sr];
// echo "result: ${neurons[$n]}\n\n";
}
}
}
/* [3] Callback the output layer's values
=========================================================*/
call_user_func($this->callback, $input, array_slice($neurons, -$this->outputN) );
}
/************************************************
**** Utilities ****
************************************************/
/* RETURNS ITERATOR THROUGH EACH LAYER
*
* @return indexes<yield> Iterator through each layer (relative->absolute)
*
*/
private function layersIterator(){
for( $l = 1 ; $l < $this->layers+2 ; $l++ )
yield $l => $l;
}
/* RETURNS AN ITERATOR ON THE NEURONS OF A LAYER
*
* @layer<int> Layer to browse
*
* @return indexes<yield> Iterator through the neurons indexes of the layer (relative->absolute)
*
*/
private function neuronsIterator($layer){
/* (1) Formats @layer argument */
if( $layer < 0 ) $layer = 0;
if( $layer > $this->layers+1 ) $layer = $this->layers+1;
$layer = intval($layer);
/* (2) If between input/hidden */
if( $layer === 0 ){
$offset = 0;
for( $n = $offset, $nl = $this->inputN ; $n < $nl ; $n++ )
yield $n-$offset => $n;
/* (3) If between hidden/output */
}else if( $layer == $this->layers+1 ){
$offset = $this->inputN + $this->neurons * $this->layers;
for( $n = $offset, $nl = $this->inputN + $this->neurons * $this->layers + $this->outputN ; $n < $nl ; $n++ )
yield $n-$offset => $n;
/* (2) If in between hidden layer */
}else{
$offset = $this->inputN + $this->neurons * ($layer-1);
for( $n = $offset, $nl = $this->inputN+$this->neurons*$layer ; $n < $nl ; $n++ )
yield $n-$offset => $n;
}
}
/* RETURNS AN ITERATOR ON THE SYNAPSES BETWEEN A NEURON AND ITS PREVIOUS LAYER'S NEURONS
*
* @layer<int> Destination layer
* @neuron<int> Destination neuron
*
* @return indexes<yield> Iterator through the synapses indexes between the destination neuron and the source layer's neurons (neuronIndex->SynapseIndex)
*
*/
private function synapsesIterator($layer, $neuron){
/* (1) Formats @layer argument */
if( $layer < 1 ) $layer = 1;
if( $layer > $this->layers+1 ) $layer = $this->layers+1;
$layer = intval($layer);
$prev = $layer-1;
/* (2) If between input/hidden */
if( $layer === 1 ){
$offset = 0;
for( $s = $offset+$neuron, $sl = $this->inputN*$this->neurons ; $s < $sl ; $s += $this->neurons )
yield ($s-$offset-$neuron)/$this->neurons => $s;
/* (3) If between hidden/output */
}else if( $layer == $this->layers+1 ){
$offset = $this->neurons * ($this->inputN+$this->neurons*$this->layers);
for( $s = $offset+$neuron, $sl = $offset+$this->neurons*$this->outputN ; $s < $sl ; $s += $this->outputN )
yield $this->inputN+$this->neurons*($this->layers-1) + ($s-$offset-$neuron)/$this->outputN => $s;
/* (2) If in between hidden layer */
}else{
$offset = $this->neurons * ($this->inputN+$this->neurons*($prev-1));
for( $s = $offset+$neuron, $sl = $offset+$this->neurons*$this->neurons ; $s < $sl ; $s += $this->neurons )
yield $this->inputN+$this->neurons*($prev-1) + ($s-$offset-$neuron)/$this->neurons => $s;
}
}
/************************************************
**** Serialization ****
************************************************/
/* SERIALIZES A Genome
*
* @return serialized<String> Serialized representation of the Genome
*
*/
public function serialize(){
/* (1) Initialize result */
$csv = '';
/* (2) Adds global attributes */
$csv .= $this->layers .','. $this->inputN .','. $this->neurons .','. $this->outputN .';';
/* (3) Adds synapses data */
$csv .= implode(',', $this->synapses);
return $csv;
}
/* BUILDS A Genome BASED ON HIS SERIALIZED REPRESENTATION
*
* @serialized<String> Serialized representation of a Genome
*
*/
public function unserialize($serialized){
/* (1) Segmenting data */
$segments = explode(';', $serialized);
// Manage segmentation error
if( count($segments) < 3 )
throw new \Error('Format error during Genome unserialization.');
/* (2) Get global attributes */
$globals = explode(',', $segments[0]);
if( count($globals) < 4 )
throw new \Error('Format error during Genome unserialization.');
$this->layers = intval($globals[0]);
$this->inputN = intval($globals[1]);
$this->layers = intval($globals[2]);
$this->outputN = intval($globals[3]);
/* (3) Get synapses values */
$this->synapses = explode(',', $segments[1]);
}
}
/************************************************
**** USE CASE ****
************************************************/
$use_case = false;
if( $use_case ){
/* (1) Basic Creation */
$a = new Genome(2, 3, 3, 2); // 2 layers of 3 neurons each -> randomly filled + 3 input neurons + 2 output neurons
/* (2) Inheritance */
$b = new Genome($a); // Clone of @a
/* (3) Section Title */
$b->mutation(0.3); // @b has now mutated with a threshold of 30%
/* (4) Cross-over (father+mother) */
$c = new Genome($a, $b); // @c is a randomly-done mix of @a and @b
}
?>